Resources

Website Links

Research Publications

    1. C. P. Snow, The two cultures and the scientific revolution, Cambridge University Press, New York, p 17 (1959).

    2. M. Kemp, From Science in Art to the Art of Science, Nature, 434, 309 (2005)

    3. A. Herczynski, C. Cernuschi, and L. Mahadevan, Paintings with drops, jets and films, Physics 
Today, 64(6), 31-36 (2011).

    4. S. Zetina, F.A. Godinez, and R. Zenit, A hydrodynamic instability is used to create aesthetically 
appealing patterns in painting, PLoS One, 10, e0126135 (2015).

    5. R. Zenit, Some fluid mechanical aspects of artistic painting, Physical Review Fluids, 
4(11), 110507:1-16 (2019).

    6. A. Herczynski, From depicting to deploying fluids in art, Bull. Am. Phys. Soc. 64(13), 356 
(2019).

    7. T. Truscott, Unraveling the motion of a fluid from dry paint, Bull. Am. Phys. Soc. 
64(13), 357 (2019).

    8. J González-Gutiérrez, Pattern formation in watercolor paintings, Bull. Am. Phys. 
Soc. 64(13), 355 (2019).

    9. J. González-Gutiérrez, J. C. Ruiz-Suárez, Exploring the physics of sand drawings: the 
role of craters, furrows, and piles, Euro Phys. J. E 40(4), 45 (2017).

    10. R. E. Moctezuma and J. González-Gutiérrez, Multifractal structure in sand drawings, 
Fractals, 28(01), 2050004 (2020).

    11. C. Cernuschi, A. Herczynski, and D. Martin, Abstract Expressionism and Fractal Geometry – in 
Pollock Matters, Ellen G. Landau and Claude Cernuschi ed., McMullen Museum, August 2007.

    12. C. Cernuschi and A. Herczynski, The Subversion of gravity in Jackson Pollock abstractions, The 
Art Bulletin, XC, No 4, 616-639 (2008).

    13. T. Truscott, B. Darbois-Texier, B. Lovett, M. Brandenbourger, L. Maquet, Z Pan, T. 
Gilet, D Strivay, S. Dorbolo Unraveling expressionism, Bull. Am. Phys. Soc, 60, 
M35.001 (2015).

    14. B. Palacios, A. Rosario, M. M. Wilhelmus, S. Zetina, R. Zenit, Pollock avoided 
hydrodynamic instabilities to paint with his dripping technique, PLoS ONE, 14(10), 
e0223706 (2019).

    15. C. Cernuschi and A. Herczynski, Cutting Pollock Down to Size: the Boundaries of the Poured 
Technique – in Pollock Matters, Ellen G. Landau and Claude Cernuschi editors, McMullen 
Museum, August 2007.

    16. R. P. Taylor, A. P. Micolich, D. Jonas, Nature 399, 422-422 (1999)

    17. R. P. Taylor, A. P. Micolich, D. Jonas, The Construction of Jackson Pollock’s Fractal Drip Paintings, Leonardo, 35(2), 203–207 (2002).

    18. B. Henderson-Sellers and D. Cooper, Has classical music a fractal nature? Comp. 
and the Humanities, 27, 277-284 (1993).

    19. K. Hsu and A. Hsu, Fractal geometry of music, PNAS 87, 938-941(1990).

    20. J. Fauvel, R. Flood, and R. Wilson, eds., Music and mathematics: from Pythagoras to 
fractals, Oxford University Press, 2003.

    21. G. W. Don, K. K. Muir, G. B. Volk, and J. S. Walker, Music: broken symmetry, geometry, and complexity, Notices of AMS, 57 No 1, 30-49, (2010).

    22. J. McDonough and A. Herczynski, Fractal patterns in music (in preparation).
    10

    23. Paul Klee Notebooks, Volume 1, The Thinking Eye, Percy Lund, Humphries & Co., Ltd, London, p. 533 (1961).

    24. A. Herczynski, Paul Klee notebooks: form and mathematics, invited lecture at the Newton Institute (2017), https://www.newton.ac.uk/seminar/20171128141014501.

    25. Lynn Gamwell, Exploring the invisible – art, science, and the spiritual, Princeton Univ. Press, 2020.

    26. H. Pottmann, A. Asperil, M. Hofer, A. Klian, and D. Bentley, Architectural Geometry, Bentley Institute Press, 2007.

    27. M. Atiyah, Art of Mathematics, Notices of AMS, 57 No 1, p. 8 (2010).

    28. M. Barnsley, The life and survival of mathematical ideas, Notices of AMS, 57 No 1, 
10-22 (2010).

    29. J. Rogala, B. Bajno, and A. Wróbel, A hidden message: decoding artistic intent, 
PsyCh Journal (2020) DOI: 10.1002/pchj.374.

    30. L. Calatroni, M. d’Autume R. Hocking, S. Panayotova, S. Parisotto, P. Ricciardi, C. 
B. Schönlieb, Unveiling the invisible: mathematical methods for restoring and 
interpreting illuminated manuscripts, Heritage Sci., 6 (1), pp. 56, (2018).

    31. N. Leone, S. Parisotto, K. Targonska-Hadzibabic, S. Bucklow, A. Launaro, S. 
Reynolds, and C. B. Schönlieb, Art speaks maths, maths speaks art arXiv:2007.08886 
(2020).

    32. D. Hockney and C. M. Falco, Optical insights into Renaissance art, Optics & 
Photonics News 11, 52 (2000).

    33. D. Hockney and C. M. Falco, Optics at the down of the Renaissance, Tecch. Digest of 
the Optical Soc. of Am., 87th Annual Meeting (2003).

    34. P. W. Anderson, More is Different, Science 177, 393-396 (1972).

    35. D. Krakauer, K. Pomerantz, John Gaddis, Introduction to History, Big History, & 
Metahistory, Santa-Fe Institute Press (2017).

    36. American Mathematical Society website: http://www.ams.org/publicoutreach/math- 
imagery/math-imagery.

    37. R. P. Taylor et al., Authenticating Pollock Paintings Using Fractal Geometry, Pattern 
Recognition Letters 28, 695 (2007).

    38. K. Jones-Smith and H. Mathur, Drip paintings and fractal analysis, Phys. Rev. E 79, 
046111 (2009)︎.

    39. F. Fiorani, The shadow drawing: how science taught Leonardo how to paint, Farrar,
    Straus and Giroux, New York, 2020.

    40. D. Howard and L. Moretti, Sound and space in Renaissance Venice: architecture, music, acoustics, Yale University Press 2010.